pytest vs Spock comparison of testing frameworks
What are the differences between pytest and Spock?

pytest

https://docs.pytest.org/en/latest/

Spock

http://spockframework.org/
Programming language

Python

Java

Category

Unit Testing

Unit Testing

General info

Pytest is the TDD 'all in one' testing framework for Python

Pytest is a powerful Python testing framework that can test all and levels of software. It is considered by many to be the best testing framework in Python with many projects on the internet having switched to it from other frameworks, including Mozilla and Dropbox. This is due to its many powerful features such as ‘assert‘ rewriting, a third-party plugin model and a powerful yet simple fixture model.

Spock is a testing and specification framework for Java and Groovy applications

Spock has a highly expressive specification language, and due to its JUnit runner, Spock is compatible with most IDEs, build tools, and continuous integration servers.Spock is inspired from JUnit, RSpec, jMock, Mockito, Groovy, Scala, Vulcans among others
xUnit
Set of frameworks originating from SUnit (Smalltalk's testing framework). They share similar structure and functionality.

No

No

Client-side
Allows testing code execution on the client, such as a web browser

Yes

pytest can test any part of the stack including front-end components

Yes

Spock tests front-end components and functionality by unit testing individual classes and functions
Server-side
Allows testing the bahovior of a server-side code

Yes

pytest is powerful enough to test database and server components and functionality

Yes

Spock tests back-end components and functionality by unit testing individual classes and functions
Fixtures
Allows defining a fixed, specific states of data (fixtures) that are test-local. This ensures specific environment for a single test

Yes

Pytest has a powerful yet simple fixture model that is unmatched in any other testing framework.

Yes

Spock contains four methods for setting up environments :setup() (run before every feature method), cleanup() (run after every feature method), setupSpec() (run before the first feature method), cleanupSpec() (run after the last feature method)
Group fixtures
Allows defining a fixed, specific states of data for a group of tests (group-fixtures). This ensures specific environment for a given group of tests.

Yes

Pytest's powerful fixture model allows grouping of fixtures

Yes

You can use the fixture methods to setup environments for groups of tests.
Generators
Supports data generators for tests. Data generators generate input data for test. The test is then run for each input data produced in this way.

Yes

pytest has a hook function called pytest_generate_tests hook which is called when collecting a test function and one can use it to generate data

N/A

Licence
Licence type governing the use and redistribution of the software

MIT License

Apache License 2.0

Mocks
Mocks are objects that simulate the behavior of real objects. Using mocks allows testing some part of the code in isolation (with other parts mocked when needed)

Yes

By either using unittest.mock or using pytest-mock a thin wrapper that provides mock functionality for pytest

Yes

Spock has inbuilt mocking capabilities and has no need for external libraries
Grouping
Allows organizing tests in groups

Yes

Tests can be grouped with pytest by use of markers which are applied to various tests and one can run tests with the marker applied

Yes

You can create suites manually in spock
Other
Other useful information about the testing framework