Knapsack Pro

Selenium vs DbUnit comparison of testing frameworks
What are the differences between Selenium and DbUnit?

Selenium

https://pypi.org/project/selenium/

DbUnit

http://dbunit.sourceforge.net/
Programming language

Python

Java

Category

Web Automation

Unit Testing

General info

Selenium is an open source tool used to test web applications

Selenium is a powerful testing tool which can send standard Python commands to different browsers, despite variations in browser design. It also provides extensions to emulate user interaction with browsers, a distribution server for scaling browser allocation, and the infrastructure for implementations of the W3C WebDriver specification that lets you write interchangeable code for all major web browsers

Dbunit is a Junit extension for unit testing database driven programs

DbUnit has the ability to export and import your database data to and from XML datasets. Since version 2.0, DbUnit can also work with very large datasets when used in streaming mode and can also help you to verify that your database data match an expected set of values
xUnit
Set of frameworks originating from SUnit (Smalltalk's testing framework). They share similar structure and functionality.

No

Yes

It is a JUnit extension which is one of the most widely known members of the xUnit family
Client-side
Allows testing code execution on the client, such as a web browser

Yes

It is primarily a browser automation tool which tests front-end components and functionality

No

Server-side
Allows testing the bahovior of a server-side code

Yes

It can perform Unit tests and can test various components and behaviours in the backend using a BDD or TDD approach

Yes

Yes its used to test database functionality
Fixtures
Allows defining a fixed, specific states of data (fixtures) that are test-local. This ensures specific environment for a single test

Yes

By writing your Selenium WebDriver tests in PyTest, this gives you access to Pytest's powerful fixture model

N/A

Group fixtures
Allows defining a fixed, specific states of data for a group of tests (group-fixtures). This ensures specific environment for a given group of tests.

Yes

One can group fixtures if accessing Pytest's fixture model

N/A

Generators
Supports data generators for tests. Data generators generate input data for test. The test is then run for each input data produced in this way.

Yes

By using a library such as Faker or Fake-factory

N/A

Licence
Licence type governing the use and redistribution of the software

Apache License 2.0

GNU 2.1 License

Mocks
Mocks are objects that simulate the behavior of real objects. Using mocks allows testing some part of the code in isolation (with other parts mocked when needed)

Yes

It includes support for mocking

No

Grouping
Allows organizing tests in groups

Yes

By using the TestNG feature with which we can create groups and maintain them easily

No

Other
Other useful information about the testing framework